ATTACHMENT

Comments of the

European Council for Alkylphenols and Derivatives

and the

Alkylphenols & Ethoxylates Research Council

On the REACH Annex XV Report:

Proposal for Identification of a Substance as a CMR Cat. 1A or 1B, PBT or vPvB,

or a Substance of an Equivalent Level of Concern:

4-(1,1,3,3-tetramethylbutyl)phenol

Submitted October 13, 2011

	Table A. Aquatic Toxicity Studies with Fish and 17β-Estradiol (E2) and 17α-Ethylylestradiol (EE2) (μg/L)							
Compound (Validity Score)	Experiment	Apical Endpoints	Apical Endpoint NOEC (LOEC)	Secondary Endpoints	Secondary Endpoint NOEC (LOEC)	Comments	Reference	
Screening or Short Term Reproduction Studies								
E2 (2)	Fathead minnow adults, exposed 19 d	Reproduction (egg production)	EC50 = 0.252	VTG	EC50 = 0.120		Kramer et al. (1998)	
E2 (2)	Fathead minnow adults, exposed 14 to 16 d (Exp. 1) or 10 d (Exp. 2), clean water for 16 wk			Exp. 1: HP Exp. 2: HP, SSC	Exp. 1: Males 0.027 (0.136); Females 0.017 (0.027) Exp. 2: (2.724)	In Exp. 2, lesions in male testes occurred but reversed. Changes in SSC also reversed.	Miles- Richardson et al. (1999)	
EE2 (2)	Sheepshead minnow sub- adults to adults, exposed 59 d, then breeding trials	Survival, reproductive success, hatching success	Survival: 200(400) Repro: 0.020(0.200) Hatch: 0.020(0.200)	Male fibrosis, male T/O	Male H: 0.0002(0.002) Male T/O: 0.002(0.020)		Zilloux et al. (2001)	
EE2 (2)	Zebrafish adults exposed 21 d	Spawning Fertilization	0.005(0.010) (0.005)	GSI (M&F) VTG (M&F)	0.005(0.010) 0.005(0.010)		Van den Belt et al. (2001)	
EE2 (1)	Zebrafish exposed 20 to 60 dpf, breeding trials 300 dph, behavior trials 485 dph	F0 sex ratio Egg production Egg viability Female mating behavior	0.00986 0.00986 0.00986 (0.00276)	GHP Male T/O	0.00986 0.00986	Female courting behavior during mating was reduced from the short juvenile exposure	Coe et al. (2010)	
Life Cycle Studies	S							
EE2 (1)	Fathead minnow life-cycle, fertilized eggs to adults, 305 d	F0 hatch F0 E-L survival F0 larval length F0 juv. survival	>0.064 0.016(0.064) 0.004(0.016) 0.016(0.064)	SSC Male T/O F0 GHP F1 GHP	$\begin{array}{c} 0.001(0.004) \\ 0.001(0.004) \\ 0.001(0.004) \\ 0.001(0.004) \end{array}$	Complete feminization of adult fish exposed from	Lange et al. (2001)	

	Table A. Aqua	atic Toxicity Studies	s with Fish and 17β·	Estradiol (E2) and	17α-Ethylylestradio	ol (EE2) (µg/L)	
Compound	Experiment	Apical	Apical Endpoint	Secondary	Secondary	Comments	Reference
(Validity Score)		Endpoints	NOEC (LOEC)	Endpoints	Endpoint		
					NOEC (LOEC)		
		F0 juv. length	0.001(0.004)	VTG	0.004(0.016)	hatch to adult.	
		F0 juv. weight	>0.064				
		F0 Adult survival	>0.001*			*0.001 µg/L was	
		F0 Adult length	>0.001*			highest	
		F0 Adult weight	>0.001*			concentration	
		F0 Sex ratio	>0.001*			tested due to lack	
		F0 Eggs/f/d	>0.001*			of males at	
		F1 hatch	>0.001*			higher	
		F1 E-L survival	>0.001*			concentrations.	
		F1 larval length	>0.001*				
		F1 larval weight	>0.001*			Sex ratio in	
		F1 Sex ratio	(0.0.0002)			lowest F1	
						concentrations	
						tested had 69%	
						females.	
EE2 (1)	Zebrafish life	F0 E-L survival	0.010			96-h LC50 =	Wenzel et al.
	cycle, 174 d	F0 larval length	0.010			1,700 µg/L	(2001)
		F0 juv. survival	0.0011(0.010)			10	
		F0 juv. length	0.0003(0.0011)			Ratio of acute	
		F0 time to spawn	0.0003(0.0011)			LC50 (narcosis)	
		F0 eggs/f/d	0.0003(0.0011)			to fertilization	
		F0 fertilization	0.0003(0.0011)			NOEC	
		F1 E-L survival	0.002			(endocrine	
		F1 E-L length	0.0003(0.002)			modulated) of	
		F1 juv. survival	0.002			0.0003 µg/L =	
		F1 juv. length	0.0001(0.0003)			5.73E+6	
		F1 time to spawn	0.0003(0.002)				
		F1 eggs/f/d	0.0003(0.002)				
		F1 fertilization	0.0003(0.002)				
Field Studies							
EE2 (1)	Dosed a natural	Reproduction of	Complete			Population	Kidd et al. (2007)
	lake for 3 years	fathead minnow	reproduction			collapsed in year	

	Table A. Aquatic Toxicity Studies with Fish and 17β-Estradiol (E2) and 17α-Ethylylestradiol (EE2) (µg/L)							
Compound	Experiment	Apical	Apical Endpoint	Secondary	Secondary	Comments	Reference	
(Validity Score)		Endpoints	NOEC (LOEC)	Endpoints	Endpoint			
					NOEC (LOEC)			
	to 0.005 µg/L		inhibition			2 due to loss of		
	EE2					young.		
EE2 (1)	Dosed a natural	Reproduction of	Abundance not	VTG	(0.005)	Pearl dace have	Palace et al.	
	lake for 3 years	pearl dace fish	different between	Edema in ovaries	(0.005)	different life	(2006)	
			years, but	Testes dev.	(0.005)	history than		
			trending to	Intersex	(0.005)	fathead minnow,		
			smaller fish	Kidney lesions	(0.005)	so collapse may		
						come if dosing		
						continued.		

Exp. = experiment, HP = histopathology, GHP = gonadal histopathology, SSC = secondary sex characteristics, GSI, TSI, OSI – gonadal, testes, or ovarian somatic indices, T/O – testis ova, L, W – apical endpoints of growth, length or weight, VTG = vitellogenin, d = days, wk = weeks, E-L = embryo-larval, dpf = days post fertilization, M&F = male and female, eggs/f/d = production of eggs per female per reproductive day,

		Table B. A	quatic Toxicity with	Fish and Octylphenol	(OP) (µg/L)		
Compound and Validity Score	Experiment	Apical Endpoints	Apical Endpoint NOEC (LOEC)	Secondary Endpoints	Secondary Endpoint NOEC (LOEC)	Comments	Reference
Screening or Short	Term Reproduction S	tudies					
OP (2)	Rainbow trout, adult males exposed 21 d, Exp. 1 30 µg/L only, Exp. 2 dose- response			GHP VTG	Exp. 1: GHP, VTG (30) Exp. 2: GHP: No effects at 43.9 VTG 1.6(4.8)	Contradictory results on GHP	Jobling et al. (1996)
OP (2)	Rainbow trout & roach, adult males exposed 21 d			VTG	Trout: 1(10) Roach: 10(100)		Routledge et al. (1998)
OP (2)	Eelpout males exposed 21 d	Survival	No effects at 100	HSI GHP GSI VTG	50(100) (10) (10) (10)	Exposure to an antiestrogen reduced effects	Rasmussen et al. (2005)
OP (2)	Japanese medaka exposed from fertilization to swim-up 17 d	Time to hatch Hatch success	No effects at 1000 250(500)				Gray and Metcalfe (1999c)
OP (1)	Japanese medaka, adult males exposed 21 d, breeding trials	Egg production Fertilization E-L survival	(20) No effects at 230 No effects at 230	Abnormal embryos	(20) (1.5 to 4% incidence)	Fertilization success and E-L survival were not different from controls but significant downward trends were observed	Gronen et al. (1999)
OP (1)	Zebrafish adults exposed 21 d	Survival (F, M) Spawning (F) Fertilization (M)	No effects at 100 No effects at 100 No effects at 100	TSI OSI GHP (F) VTG	No effects at 100 12.5(25) No effects at 100 No effects at 100	VTG apparently not different from controls	Van den Belt et al. (2001)
OP (1)	Sheepshead minnow adult males exposed 24 d, breeding trials	%viable eggs	11.5 (33.6)	VTG GHP	(11.5) 11.5(33.6)	72-LC50 = 720 μg/L. Ratio of acute	Karels et al. (2003)

Table B. Aquatic Toxicity with Fish and Octylphenol (OP) (µg/L)							
Compound and Validity Score	Experiment	Apical Endpoints	Apical Endpoint NOEC (LOEC)	Secondary Endpoints	Secondary Endpoint NOEC (LOEC)	Comments	Reference
	w/ unexposed females					LC50 to %viable eggs NOEC of 11.5 μ g/L = 63	
OP (2)	Guppy adults exposed 28 d (M), 26-36 d (F) until birth, 26 µg/L only, offspring held in clean water 70 d	Adult Survival Brood size Brood interval Larval length Larval weight Gonopodium length Gonadal development Sex ratio	No effects at 26 No effects at 26 (both sexes) No effects at 26	Male GSI Female GSI GHP SSC Liver histology	No effects at 26 No effects at 26 No effects at 26 (26)	Increased liver vacuoles	Kinnberg et al. (2003)
OP (1)	Guppy males exposed 30 d	Survival Breeding success Gonopodium length	300(900) 300(900) No effects at 900	Sperm count Coloration GSI	(100) (increase) (100) (decrease) (100)		Toft & Baatrup (2001)
OP (3)	Guppy adult males exposed 4 wk					Not valid due to 40% control mortality. Any reported effects could be narcotic- induced. No replication.	Bayley et al. (1999)
OP (2)	Eelpout, pregnant females exposed 35 d	E-L survival E-L length E-L weight	(14) (14) (14)	ER-binding VTG OST HSI GHP	(14) (14) (14) (14) (14) 14(65)		Rasmussen et al. (2002)
OP (1)	Japanese medaka fertilized eggs exposed to 60 dph	Survival Hatch success Length Weight Sex ratio	No effects at 94 No effects at 94 No effects at 94 No effects at 94 23.7(48.1)	VTG (M) VTG (F)	6.94(11.4) 23.7(48.1)	Males began reverting to females in clean water	Seki et al. (2003)
OP (2)	Guppy males exposed 60 d	Survival	300(900)	Н	(100)		Kinnberg & Toft (2003)
OP (1)	Guppy embryos	Survival	10(100)	Coloration	100(200)	Sexual behavior	Toft & Baatrup

	Table B. Aquatic Toxicity with Fish and OctyInhenol (OP) (ug/L)							
Compound and	Experiment	Anical Endpoints	Anical Endpoint	Secondary	Secondary	Comments	Deference	
Validity Score	Experiment	Apical Enupoints	NOEC (LOEC)	Endpoints	Endpoint	Comments	Kelelelice	
valuity Score			NOLC (LOLC)	Enupoints	NOEC (LOEC)			
		Care metia	No ffor - to - to 200	M-1- CCI	NOEC (LOEC)	h: _h1.	(2002)	
	exposed 90 d	Sex ratio	No effects at 200	Male GSI	No effects at 200	nignly variable	(2003)	
		Male length	100(200)	Female GSI	No effects at 200	parameter		
		Gonopodium	10(100) (increase)	Sperm count	10(100) (increase)			
		length	No effects at 200			96-h LC50 = 495		
		Sexual behavior				μg/L. Ratio of		
						acute LC50 to		
						gonopodium length		
						NOEC of 10 µg/L		
						= 49.5. Ratio to sex		
						ratio NOEC of 200		
						= 2.5.		
OP (3)	Japanese medaka					Not valid.	Gray et al. (1999a)	
	exposed 1 to 180					Mortality ≥42% in		
	dph					controls		
OP (2)	Japanese medaka	Exp.1:		Exp.1:		No T/O in males	Gray et al. (1999b)	
	Exp. 1: exposed to	Sex ratio	No effects at 100	T/O	No effects at 100	exposed to 100		
	100 µg/L 1 to 35	Growth	(100)	Exp. 2:		μg/L E2		
	dph until 100 dph	Exp. 2:		T/O	No effects at 100			
	Exp. 2: exposed to	Sex ratio	No effects at 100	Exp. 3:				
	$100 \mu g/L$ 1 dph to	Growth	(100)	T/Ô	200(300)			
	1.2 or 3 months	Exp. 3:		GHP	(200)			
	dph	Sex ratio	No effects at 300					
	Exp 3: exposed	Male length	200(300)					
	adult males to 200-	Male weight	200(300)					
	200 ug/I	intere weight	200(200)					
	500 µg/L							
Life Cycle Studies								
OP (4)	Japanese medaka	Survival	No effects at 82.3	T/O	9.9(30.4)	Report not	Japan Ministry of	
	fertilized eggs,	Fecundity	30.4(82.3)	VTG	(9.9)	available. Results	Environment	
	lifecycle study	Fertilization	30.4(82.3)			taken from Annex	(2002)	
		Hatch success	No effects at 82.3			XV report.	l`´´	
		Time to hatch	No effects at 82.3			1		
		F0 growth	No effects at 82.3					
		F1 growth	No effects at 82.3					
OP (1)	Zebrafish life	F0 E-L survival	No effects at 35			96-h LC50 = 370	Wenzel et al.	

		Table B. A	quatic Toxicity with H	Fish and Octylphenol ((OP) (µg/L)		
Compound and Validity Score	Experiment	Apical Endpoints	Apical Endpoint NOEC (LOEC)	Secondary Endpoints	Secondary Endpoint NOEC (LOEC)	Comments	Reference
	cycle, 174 d	F0 larval length F0 juv. survival F0 juv. length F0 time to spawn F0 eggs/f/d F0 fertilization F0 sex ratio F1 E-L survival F1 E-L length	No effects at 35 No effects at 35 12(35) 12(35) 12(35) 12(35) 12(35) 12(35) No effects at 35 No effects at 35			μ g/L Ratio of acute LC50 (narcosis) to fertilization NOEC (endocrine modulated) of 12 μ g/L = 31	(2001)
OP (3)	Japanese medaka fertilized eggs to maturity, breeding trials					Not valid. Statistical analysis results not given for many key endpoints including mortality, sex ratio, fertilization rate, and reproductive success.	Knorr and Braunbeck (2002)

Exp. = experiment, HP = histopathology, GHP = gonadal histopathology, SSC = secondary sex characteristics, GSI, TSI, OSI – gonadal, testes, or ovarian somatic indices, T/O – testis ova, L, W – apical endpoints of growth, length or weight, VTG = vitellogenin, d = days, wk = weeks, E-L = embryo-larval, dpf = days post fertilization, M&F = male and female, eggs/f/d = production of eggs per female per reproductive day, WWTP = wastewater treatment plant, ER-binding = estrogen receptor binding,

	Table C. Aquatic Toxicity Studies with Amphibians and Invertebrates Exposed to Octylphenol (OP) (µg/L)								
Compound and Validity Score	Experiment	Endpoints	NOEC (LOEC)	Validity Score / Comments	Reference				
Amphibians									
African clawed frog Xenopus laevis	Exposed 2 to 3 dph larvae for 12 wk			(3) Not valid Temperature varied, not well controlled, no analytical, improper statistics	Kloas et al. (1999)				
African clawed frog Xenopus laevis	Embryos exposed up to stage of hind limb development (10.5 to 37), 2 to 2000 µg/L OP	Body length Developmental abnormalities	20(100) 100(1000)	(2) Use with care Lack of statistics for mortality data, nominal concentrations only	Bevan et al. (2003)				
African clawed frog Xenopus laevis	Males dosed using intraperitoneal injection			(3) Not valid Dosing method not relevant to aquatic hazard assessment	Van Wyk et al. (2003)				
Northern leopard frog Rana pipiens	Newly hatched tadpoles (stage 21) exposed for 10 days, 0.2 and 200 µg/L OP	Body weight Development Hind limb emergence	No effects at 200 No effects at 200 No effects at 200 7-d LC50 = 577	(2) Use with care Only two widely separated concentrations tested, nominal concentrations only	Crump et al. (2002)				
Northern leopard frog Rana pipiens	Tadpoles (stage 25) exposed for 8 months, 0.002 and 2.0 µg/L (0.01 and 10 nM)	Body weight Development	Transient increase in body weight and development at stage 29, but not stage 34. No effects at 2 µg/L (stage 34, latest stage examined). No linkage possible of a thyroid receptor activation to body weight or development	(2) Use with care Attempted testing at 0.01 nM or 0.002 μg/L, no confirmation of test concentrations	Croteau et al. (2009)				
Northern leopard frog Rana pipiens Wood frog Rana sylvatica	Tadpoles exposed from stage 26 to 36 (hind limb development), 50 to 2000 µg/L	Survival Body weight	Stage 26: LC50 = 293 Stage 36: LC50 = 578 Stage 26: LC50 = 153 Body weight data not	(2) Use with care Nominal concentrations only, overcrowding potentially causing stress related effects noted	Hogan et al. (2006)				

	Table C. Aquatic Toxicity Studies with Amphibians and Invertebrates Exposed to Octylphenol (OP) (µg/L)							
Compound and Validity Score	Experiment	Endpoints	NOEC (LOEC)	Validity Score / Comments	Reference			
			usable due to very high density of developing frogs leading to high stress conditions, known to affect growth.					
North American bullfrog Rana catesbeiana	Tadpoles at stages 32-36 exposed for 24 h, 0.2 to 20 µg/L	Sex differentiation Sex ratio	Transient earlier sex differentiation at stages 32 to 34 (all treatments) that disappeared by stage 35 No effects on sex ratio (all treatments)	(2) Use with care Nominal concentrations only	Mayer et al. (2003)			
Streamside salamander Ambystoma barbouri	Eggs/larvae exposed for 37 days, 5 to 500 µg/L OP	Time to hatch Survival Growth	50(500) 50(500) 50(500)	(2) Use with care Nominal concentrations only	Rohr et al. (2003)			
Invertebrates								
Water flea Daphnia magna	First instar neonates exposed for 5 days, 10 to 40 µg/L OP	Molting	No effects at 40 μg/L 48-h LC50 = 90 μg/L	(2) Use with care Nominal concentrations only	Zou and Fingerman (1997)			
Water flea Daphnia magna	Life-cycle, 21-d OECD Guideline 202 study	Reproduction Survival	30(100) µg/L	(1) Guideline study, GLP	Huels AG (1992)			
Copepod Acartia tonsa	Eggs, larval development, exposed 5-d	Nauplii development	EC50 = 13 μg/L EC10 = 5.2 μg/L 48-h LC50 = 420 μg/L	 (4) Insufficient information Concentration series unknown, control performance unknown. Positive control E2 had no effects on survival (48-h) at 1000 μg/L and development 5-d EC50 = 720 μg/L. 	Andersen et al. (2001)			
Copepod Tigeropsis japonicus	Nauplii to adult, 2 generation test, 0.01 to 10 µg/L OP	Nauplii stage Maturation stage Fecundity Sex ratio Survival	Development delays at 0.1 µg/L and higher No effects on mature copepods at 10 µg/L (fecundity, sex ratio, or	(2) Use with care Nominal concentrations only	Marcial et al. (2003)			

	Table C. Aquatic Toxicity Studies with Amphibians and Invertebrates Exposed to Octylphenol (OP) (µg/L)							
Compound and Validity Score	Experiment	Endpoints	NOEC (LOEC)	Validity Score / Comments	Reference			
			survival)					
Sea urchin Arbacia lixula	72-h exposure of OP to sperm and eggs, 5 to 160 μg/L OP			 (4) Insufficient information Apparent solvent effects observed for all endpoints. No statistical analysis provided to evaluate solvent effects 	Arslan et al. (2007)			
Sea urchin Paracentrotus lividus	72-h exposure of OP to sperm and eggs, 5 to 160 µg/L OP	Developmental effects Embryotoxicity	10(20) 72-h EC50 ~20 μg/L (estimated from data plot, no statistics)	(2) Use with care Nominal concentrations only	Arslan and Parlak (2007)			
Sea urchin Strongylocentrotus purpuratuns	96-h exposure of OP to eggs, 0.0001 to 5 μg/L	Developmental effects	OP: EC50 = 0.174 μg/L E2: EC50 = 14.2 μg/L EE2: EC50 = 30.3 μg/L	(2) Use with care Unusual results, OP much lower effect concentrations than E2 or EE2 for several developmental effects, nominal concentrations only	Roepke et al. (2005)			
Giant ramshorn snail Marisa cornuarietis Dogwhelk Nucella lapillus	Reproduction studies			(3) Not valid These experiments had no replication, no analytical confirmation of test concentrations, had varying density of organisms in the tanks, and employed incorrect statistics.	Oehlmann et al. (2000)			
New Zealand mud snail Potamopyrgus antipodarum	Adult exposure for 9 wk	Growth, mortality, embryo production		(3) Not valid Numerous experimental challenges render the study not valid. A partial listing of the flaws are identified in the Annex XV dossier.	Jobling et al. (2003)			
New Zealand mud snail Potamopyrgus antipodarum		Embryo production, unshelled embryos		(3) Not valid Numerous experimental challenges render the	Duft et al. (2003)			

Table C. Aquatic Toxicity Studies with Amphibians and Invertebrates Exposed to Octylphenol (OP) (µg/L)								
Compound and Validity	Experiment	Endpoints	NOEC (LOEC)	Validity Score /	Reference			
Score				Comments				
				study not valid. A partial				
				listing of the flaws are				
				identified in the Annex				
				XV dossier.				

d = days, wk = weeks, dph = days post-hatch

References for Tables A, B and C

- Andersen, H. R.; Wollenberger, L.; Halling-Sorensen, B.; Kusk, K. O.: Development of copepodnauplii to copepodites - A parameter for chronic toxicity including endocrine disruption. Environmental Toxicology and Chemistry 2001, 20[12]; 2821-2829.
- Arslan, O. C., Parlak, H., Oral, R., Katalay, S. 2007. The Effects of Nonylphenol and Octylphenol on Embryonic Development of Sea Urchin (Paracentrotus lividus). Environmental Contamination and Toxicology, 53(2); 214-219.
- Arslan, O.C. and Parlak, H. 2007. Embryotoxic effects of nonylphenol and octylphenol in sea urchin Arbacia lixula. Ecotoxicology, 16(6); 439-444.
- Bayley, M., Nielsen, J.R., Baatrup, E. 1999. Guppy Sexual Behavior as an Effect Biomarker of Estrogen Mimics. Ecotoxicology and Environmental Safety, 43(1); 68-73.
- Bevan, C.L., Porter, D.M., Prasad, A., Howard, M.J., Henderson, L.P. 2003. Environmental Estrogens Alter Early Development in Xenopus laevis. Environ Health Perspect, 111; 488-496.
- Coe, T.S., Soffker, M.K., Filby, A.L., et al. 2010. Impacts of early life exposure to estrogen on subsequent breeding behavior and reproductive success in zebrafish. Environ Sci Technol 44: 6481-6487.
- Crump, D., Lean, D., Trudeau, V.L. 2002. Octylphenol and UV-B Radiation Alter Larval Development and Hypothalamic Gene Expression in the Leopard Frog (Rana pipiens). Environmental Health Perspectives, 110(3); 277-284.
- Desbrow, C., Routledge, E.J., Brighty G.C., Sumpter J.P., Waldock, M. 1998. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 32:11, 1549-1558.
- Duft, M., Schulte-Oehlmann, U., Weltje, L., Tillmann, M., Oehlmann, J. 2003. Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquatic Toxicology, 64(4); 437-449.
- Gray, M.A., Nimi, A.J., Metcalfe, C.D. 1999a. Factors affecting the development of testis-ova in medaka, Oryzias latipes, exposed to octylphenol. Environomental Toxicology and Chemistry, 18(8); 1835-1842.
- Gray, M.A., Teather, K.L., Metcalfes, C.D. 1999b. Reproductive success and behavior of Japanese medaka (Oryzias latipes) exposed to 4-tert-octylphenol. Environomental Toxicology and Chemistry, 18(11); 2587-2594.

- Gray, M.A., Metcalfe, C.D. 1999c. Toxicity of 4-tert-octylphenol to early life stages of Japanese medaka (Oryzias latipes). Aquatic Toxicol 1999c, 46: 149-154.
- Gronen, S., N. Denslow, et al. 1999. Serum vitellogenin levels and reproductive impairment of male Japanese Medaka (Oryzias latipes) exposed to 4-tert-octylphenol. Environmental health perspectives, 107(5): 385-390.
- Hogan, N.S., Lean, D.R.S., Trudeau, V.L. 2006. Exposures to Estradiol, Ethinylestradiol and Octylphenol Affect Survival and Growth of *Rana pipiens* and *Rana sylvatica* Tadpoles. Journal of Toxicology and Environmental Health, Part A: Current Issues, 69(16); 1555-1569. Taylor & Francis.
- Huels, A.G. 1992. Bestimmung der Auswirkungen von Octylphenol PT auf die Reproduktion von Daphnia magna (nach OCED-Guideline 202 Teil II). Abschlussbericht DL-139. Huels Aktiengesellschaft, Prufeinrichting, PS-Biologie/Toxicologie, Marl, Germany.
- Japan MOE. 2002. SPEED98 Strategic Programs on Environmental Endocrine Disrupters, Annex 7, 2002. Ministry of the Environment of Japan.
- Jobling, S., D. Sheahan, et al. 1996. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environomental Toxicology and Chemistry, 15(2): 194-202.
- Jobling, S., Casey, D., Rodgers-Gray, T., Oehlmann, J., Schulte-Oehlmann, U., Pawlowski, S., Baunbeck, T., Turner, A.P., Tyler, C.R. 2003. Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquatic Toxicology, 65(2); 205-220.
- Karels, A.A., S. Manning, et al. 2003. Reproductive effects of estrogenic and antiestrogenic chemicals on sheepshead minnows (Cyprinodon variegatus). Environmental toxicology and chemistry, SETAC 22(4): 855-865.
- Kidd, K.A., Blanchfield, P.J., Mills, K.H. et al. 2007. Collapse of a fish population after exposure to a synthetic estrogen. PNAS (Proc National Acad Sci) 104: 8897-8901.
- Kinnberg, K., B. Korsgaard, et al. 2003. Effects of octylphenol and 17beta-estradiol on the gonads of guppies (Poecilia reticulata) exposed as adults via the water or as embryos via the mother. Comp Biochem Physiol C Toxicol Pharmacol, 134(1): 45-55.
- Kloas, W., Lutz, I., Einspanier, R. 1999. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. The Science of The Total Environment, 225(1-2); 59-68.

- Knörr, S. and Braunbeck, T.: Decline in Reproductive Success, Sex Reversal, and Developmental Alterations in Japanese Medaka (Oryzias latipes) after Continuous Exposure to Octylphenol. Ecotoxicology and Environmental Safety 2002, 51[3]; 187-196.
- Kramer, V.J., Miles-Richardson, S., Piersens, S.L., Giesy, J.P. 1998. Reproductive impairment and induction of alkaline-labile phosphate, a biomarker of estrogen exposure, in fathead minnows (Pimephales promelas) exposed to waterborne 17Bestradiol. Aquatic Toxicol 40: 335-360.
- Lange, R., Hutchinson, T.H., Croudace, C.P., et al. 2001. Effects of the synthetic estrogen 17-alpha-ethynylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20: 1216-1227.
- Marcial, H.S., Hagiwara, A., Snell, T.W. 2003. Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environmental Toxicology and Chemistry, 22(12); 3025-3030.
- Mayer, L.P., Dyer, C.A., Propper, C.R. 2003. Exposure to 4-tert-Octylphenol Accelerates Sexual Differentiation and Disrupts Expression of Steroidogenic Factor 1 in Developing Bullfrogs. Environmental Health Perspectives, 111(4); 557-561.
- Miles-Richardson S.R., Kramer V.H., Fitzgerald S.D. et al. 1999. Effects of waterborne exposure of 17B-estradiol on secondary sex characteristics and gonads o fathead minnows (Pimephales promelas). Aquatic Toxicol 47: 129-145.
- Oehlmann, J., Schulte-Oehlmann, U.; Tillmann, M.; Markert, B. 2000. Effects of Endocrine Disruptors on Prosobranch Snails (Mollusca: Gastropoda) in the Laboratory. Part I: Bisphenol A and Octylphenol as Xeno-Estrogens. Ecotoxicology, 9[6]; 383-397. Kluwer Academic Publishers.
- Palace V.P., Wautier K.G., R.E. Evans, et al. 2006. Biochemical and histopathologiacal efffects in parl dace (Margariscus margarita) chronically exposed to a sunthetic estrogen in a whole lake experiment. Environ Toxicol Chem., 25: 1114-1125.
- Roepke, T.A., Snyder, M.J., Cherr, G.N. 2005. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Aquatic Toxicology, 71(2); 155-173.
- Rohr, J.R., Elskus, A.A., Shepherd, B.S., Crowley, P.H., McCarthy, T.M., Niedzwiecki, J.H., Sager, T.; Sih, A., Palmer, B.D. 2003. Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander (Ambystoma barbouri). Environmental Toxicology and Chemistry, 22(10); 2385-2392. 2010 SETAC.

- Routledge, E.J. and J.P. Sumpter. 1997. Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem., 272(6): 3280-3288.
- Rasmussen, T.H., Andreassen, T.K., Pedersen, S.N., Van der Ven, L.T.M., Bjerregaard, P., Korsgaard, B. 2002. Effects of waterborne exposure of octylphenol and oestrogen on pregnant viviparous eelpout (Zoarces viviparus) and her embryos in ovario. Journal of Experimental Biology, 205(24); 3857-3876.
- Rasmussen, T.H., S.J. Teh, et al. 2005. Anti-estrogen prevents xenoestrogen-induced testicular pathology of eelpout (Zoarces viviparus). Aquatic toxicology, 72(3): 177-194.
- Toft, G. and Baatrup, E. 2001. Sexual Characteristics Are Altered by 4-tert-Octylphenol and 17[beta]-Estradiol in the Adult Male Guppy (Poecilia reticulata). Ecotoxicology and Environmental Safety, 48(1); 76-84.
- Toft, G. and Baatrup, E. 2003. Altered sexual characteristics in guppies (Poecilia reticulata) exposed to 17[beta]-estradiol and 4-tert-octylphenol during sexual development. Ecotoxicology and Environmental Safety, 56(2); 228-237.
- Van den Belt, K., R. Verheyen, et al. 2001. Reproductive effects of ethynylestradiol and 4t- octylphenol on the zebrafish (Danio rerio). Archives of environmental contamination and toxicology, 41(4): 458-467.
- van Wyk, J.H., Pool, E.J., Leslie, A.J. 2003. The Effects of Anti-Androgenic and Estrogenic Disrupting Contaminants on Breeding Gland (Nuptial Pad) Morphology, Plasma Testosterone Levels, and Plasma Vitellogenin Levels in Male Xenopus laevis (African Clawed Frog). Archives of Environmental Contamination and Toxicology, 44(2); 247-256. New York, Springer.
- Wenzel, A., Schäfers, C., Vollmer, G., Michna, H.; Diel, P. 2001. Research efforts towards the development and validation of a test method for the identification of endocrine disrupting chemicals., B6-7920/98/000015; 1-82. Schmallenberg, Fraunhofer-Institut für Umweltchemie und Ökotoxikologie.
- Zillioux E.J., Johnson I.C., Kiparissis Y., et al. 2001. The sheepshead minnow as an in vivo model for endpcoring disruption in marine teleosts: A partial life-cycle test with 17-alpha-ethynylestradiol. Environ Toxicol Chem, 20: 1968-1978.
- Zou, E. and Fingerman, M. 1997. Effects of Estrogenic Xenobiotics on Molting of the Water Flea, Daphnia magna. Ecotoxicology and Environmental Safety, 38[3]; 281-285.